Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 8: e9121, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32509451

RESUMO

Baseline knowledge of spatial and temporal distribution patterns is essential for cetacean management and conservation. Such knowledge is particularly important in areas where gillnet fishing occurs, as the Upper Gulf of California, which increases the probability of bycatch of cetaceans. In this area, the vaquita porpoise (Phocoena sinus) has been widely studied, but the knowledge of other cetaceans is scarce and based on traditional visual survey methods. We used data collected by an array of acoustic click detectors (C-PODs) during the summers 2011 to 2015 to analyze the distribution of dolphins in the Vaquita Refuge in the Upper Gulf of California. We recorded 120,038 echolocation click trains of dolphins during 12,371 days of recording effort at 46 sampling sites. Based on simultaneous visual and acoustic data, we estimated a false positive acoustic detection rate of 19.4%. Dolphin acoustic activity varied among sites, with higher activity in the east of the Vaquita Refuge. Acoustic activity was higher at night than during the day. We used negative binomial generalized linear models to study the count of clicks of dolphins in relation to spatial, temporal, physical, biological and anthropogenic explanatory variables. The best model selected for the response variable included sampling site, day-night condition, and vertical component of tide speed. Patterns in the spatial distribution of predicted acoustic activity of dolphins were similar to the acoustic activity observed per sampling season. Higher acoustic activity was predicted at night, but the tide speed variable was not relevant under this condition. Acoustic activity patterns could be related to the availability of prey resources since echolocation click trains are associated with foraging activities of dolphins. This is the first study of the distribution of dolphins in Mexico using medium-term systematic passive acoustic monitoring, and the results can contribute to better management to the natural protected area located in the Upper Gulf of California.

2.
R Soc Open Sci ; 6(7): 190598, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31417757

RESUMO

The vaquita (Phocoena sinus) is a small porpoise endemic to Mexico. It is listed by IUCN as Critically Endangered because of unsustainable levels of bycatch in gillnets. The population has been monitored with passive acoustic detectors every summer from 2011 to 2018; here we report results for 2017 and 2018. We combine the acoustic trends with an independent estimate of population size from 2015, and visual observations of at least seven animals in 2017 and six in 2018. Despite adoption of an emergency gillnet ban in May 2015, the estimated rate of decline remains extremely high: 48% decline in 2017 (95% Bayesian credible interval (CRI) 78% decline to 9% increase) and 47% in 2018 (95% CRI 80% decline to 13% increase). Estimated total population decline since 2011 is 98.6%, with greater than 99% probability the decline is greater than 33% yr-1. We estimate fewer than 19 vaquitas remained as of summer 2018 (posterior mean 9, median 8, 95% CRI 6-19). From March 2016 to March 2019, 10 dead vaquitas killed in gillnets were found. The ongoing presence of illegal gillnets despite the emergency ban continues to drive the vaquita towards extinction. Immediate management action is required if the species is to be saved.

4.
PLoS One ; 14(1): e0209324, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30629597

RESUMO

Fin whales (Balaenoptera physalus) have a global distribution, but the population inhabiting the Gulf of California (GoC) is thought to be geographically and genetically isolated. However, their distribution and movements are poorly known. The goal of this study was to describe fin whale movements for the first time from 11 Argos satellite tags deployed in the southwest GoC in March 2001. A Bayesian Switching State-Space Model was applied to obtain improved locations and to characterize movement behavior as either "area-restricted searching" (indicative of patch residence, ARS) or "transiting" (indicative of moving between patches). Model performance was assessed with convergence diagnostics and by examining the distribution of the deviance and the behavioral parameters from Markov Chain Monte Carlo models. ARS was the predominant mode behavior 83% of the time during both the cool (December-May) and warm seasons (June-November), with slower travel speeds (mean = 0.84 km/h) than during transiting mode (mean = 3.38 km/h). We suggest ARS mode indicates either foraging activities (year around) or reproductive activities during the winter (cool season). We tagged during the cool season, when the whales were located in the Loreto-La Paz Corridor in the southwestern GoC, close to the shoreline. As the season progressed, individuals moved northward to the Midriff Islands and the upper gulf for the warm season, much farther from shore. One tag lasted long enough to document a whale's return to Loreto the following cool season. One whale that was originally of undetermined sex, was tagged in the Bay of La Paz and was photographed 10 years later with a calf in the nearby San Jose Channel, suggesting seasonal site fidelity. The tagged whales moved along the western GoC to the upper gulf seasonally and did not transit to the eastern GoC south of the Midriff Islands. No tagged whales left the GoC, providing supporting evidence that these fin whales are a resident population.


Assuntos
Baleia Comum/fisiologia , Migração Animal/fisiologia , Animais , Teorema de Bayes , Comportamento Animal/fisiologia , Feminino , Masculino , Cadeias de Markov , México , Modelos Biológicos , Método de Monte Carlo , Oceano Pacífico , Dinâmica Populacional , Comunicações Via Satélite , Estações do Ano , Telemetria
5.
J Acoust Soc Am ; 142(5): EL512, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29195434

RESUMO

The vaquita is a critically endangered species of porpoise. It produces echolocation clicks, making it a good candidate for passive acoustic monitoring. A systematic grid of sensors has been deployed for 3 months annually since 2011; results from 2016 are reported here. Statistical models (to compensate for non-uniform data loss) show an overall decline in the acoustic detection rate between 2015 and 2016 of 49% (95% credible interval 82% decline to 8% increase), and total decline between 2011 and 2016 of over 90%. Assuming the acoustic detection rate is proportional to population size, approximately 30 vaquita (95% credible interval 8-96) remained in November 2016.


Assuntos
Acústica , Ecolocação , Espécies em Perigo de Extinção , Monitoramento Ambiental/métodos , Toninhas/psicologia , Vocalização Animal , Acústica/instrumentação , Animais , Ecolocação/classificação , Monitoramento Ambiental/instrumentação , Densidade Demográfica , Toninhas/classificação , Processamento de Sinais Assistido por Computador , Fatores de Tempo , Transdutores , Vocalização Animal/classificação
6.
Conserv Biol ; 31(1): 183-191, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27338145

RESUMO

The vaquita (Phocoena sinus) is the world's most endangered marine mammal with approximately 245 individuals remaining in 2008. This species of porpoise is endemic to the northern Gulf of California, Mexico, and historically the population has declined because of unsustainable bycatch in gillnets. An illegal gillnet fishery for an endangered fish, the totoaba (Totoaba macdonaldi), has recently resurged throughout the vaquita's range. The secretive but lucrative wildlife trade with China for totoaba swim bladders has probably increased vaquita bycatch mortality by an unknown amount. Precise population monitoring by visual surveys is difficult because vaquitas are inherently hard to see and have now become so rare that sighting rates are very low. However, their echolocation clicks can be identified readily on specialized acoustic detectors. Acoustic detections on an array of 46 moored detectors indicated vaquita acoustic activity declined by 80% between 2011 and 2015 in the central part of the species' range. Statistical models estimated an annual rate of decline of 34% (95% Bayesian credible interval -48% to -21%). Based on results from 2011 to 2014, the government of Mexico enacted and is enforcing an emergency 2-year ban on gillnets throughout the species' range to prevent extinction, at a cost of US$74 million to compensate fishers. Developing precise acoustic monitoring methods proved critical to exposing the severity of vaquitas' decline and emphasizes the need for continual monitoring to effectively manage critically endangered species.


Assuntos
Conservação dos Recursos Naturais , Ecolocação , Espécies em Perigo de Extinção , Toninhas , Acústica , Animais , Teorema de Bayes , Humanos , México
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...